Determining the stiffness of a helical spring involves understanding the relationship between the force applied and the resulting deflection. This stiffness, often expressed in units of force per unit length (e.g., N/mm or lb/in), is derived from factors such as the spring’s material properties, wire diameter, coil diameter, and number of active coils. For instance, a spring that deflects 10 mm under a 100 N load exhibits a stiffness of 10 N/mm.
Accurate stiffness determination is fundamental in mechanical design across diverse applications, from automotive suspensions and precision instruments to industrial machinery. Properly engineered springs ensure predictable performance and prevent failures due to excessive deflection or fatigue. Historically, hand calculations and slide rules were employed; however, modern software and computational tools now offer faster and more precise methods, enabling complex spring designs and simulations.